Serveur d'exploration sur la rapamycine et les champignons

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Analysis of the roles of phosphatidylinositol-4,5-bisphosphate and individual subunits in assembly, localization, and function of Saccharomyces cerevisiae target of rapamycin complex 2.

Identifieur interne : 000390 ( Main/Exploration ); précédent : 000389; suivant : 000391

Analysis of the roles of phosphatidylinositol-4,5-bisphosphate and individual subunits in assembly, localization, and function of Saccharomyces cerevisiae target of rapamycin complex 2.

Auteurs : Maria Nieves Martinez Marshall [États-Unis] ; Anita Emmerstorfer-Augustin [États-Unis] ; Kristin L. Leskoske [États-Unis] ; Lydia H. Zhang [États-Unis] ; Biyun Li [États-Unis] ; Jeremy Thorner [États-Unis]

Source :

RBID : pubmed:30969890

Descripteurs français

English descriptors

Abstract

Eukaryotic cell survival requires maintenance of plasma membrane (PM) homeostasis in response to environmental insults and changes in lipid metabolism. In yeast, a key regulator of PM homeostasis is target of rapamycin (TOR) complex 2 (TORC2), a multiprotein complex containing the evolutionarily conserved TOR protein kinase isoform Tor2. PM localization is essential for TORC2 function. One core TORC2 subunit (Avo1) and two TORC2--associated regulators (Slm1 and Slm2) contain pleckstrin homology (PH) domains that exhibit specificity for binding phosphatidylinositol-4,5-bisphosphate (PtdIns4,5P2). To investigate the roles of PtdIns4,5P2 and constituent subunits of TORC2, we used auxin-inducible degradation to systematically eliminate these factors and then examined localization, association, and function of the remaining TORC2 components. We found that PtdIns4,5P2 depletion significantly reduced TORC2 activity, yet did not prevent PM localization or disassembly of TORC2. Moreover, truncated Avo1 (lacking its C-terminal PH domain) was still recruited to the PM and supported growth. Even when all three PH-containing proteins were absent, the remaining TORC2 subunits were PM-bound. Revealingly, Avo3 localized to the PM independent of both Avo1 and Tor2, whereas both Tor2 and Avo1 required Avo3 for their PM anchoring. Our findings provide new mechanistic information about TORC2 and pinpoint Avo3 as pivotal for TORC2 PM localization and assembly in vivo.

DOI: 10.1091/mbc.E18-10-0682
PubMed: 30969890
PubMed Central: PMC6724684


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Analysis of the roles of phosphatidylinositol-4,5-
<i>bis</i>
phosphate and individual subunits in assembly, localization, and function of
<i>Saccharomyces cerevisiae</i>
target of rapamycin complex 2.</title>
<author>
<name sortKey="Martinez Marshall, Maria Nieves" sort="Martinez Marshall, Maria Nieves" uniqKey="Martinez Marshall M" first="Maria Nieves" last="Martinez Marshall">Maria Nieves Martinez Marshall</name>
<affiliation wicri:level="2">
<nlm:affiliation>Division of Biochemistry, Biophysics and Structural Biology, Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Californie</region>
</placeName>
<wicri:cityArea>Division of Biochemistry, Biophysics and Structural Biology, Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Emmerstorfer Augustin, Anita" sort="Emmerstorfer Augustin, Anita" uniqKey="Emmerstorfer Augustin A" first="Anita" last="Emmerstorfer-Augustin">Anita Emmerstorfer-Augustin</name>
<affiliation wicri:level="2">
<nlm:affiliation>Division of Biochemistry, Biophysics and Structural Biology, Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Californie</region>
</placeName>
<wicri:cityArea>Division of Biochemistry, Biophysics and Structural Biology, Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Leskoske, Kristin L" sort="Leskoske, Kristin L" uniqKey="Leskoske K" first="Kristin L" last="Leskoske">Kristin L. Leskoske</name>
<affiliation wicri:level="2">
<nlm:affiliation>Division of Biochemistry, Biophysics and Structural Biology, Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Californie</region>
</placeName>
<wicri:cityArea>Division of Biochemistry, Biophysics and Structural Biology, Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Zhang, Lydia H" sort="Zhang, Lydia H" uniqKey="Zhang L" first="Lydia H" last="Zhang">Lydia H. Zhang</name>
<affiliation wicri:level="2">
<nlm:affiliation>Division of Biochemistry, Biophysics and Structural Biology, Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Californie</region>
</placeName>
<wicri:cityArea>Division of Biochemistry, Biophysics and Structural Biology, Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Li, Biyun" sort="Li, Biyun" uniqKey="Li B" first="Biyun" last="Li">Biyun Li</name>
<affiliation wicri:level="2">
<nlm:affiliation>Division of Biochemistry, Biophysics and Structural Biology, Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Californie</region>
</placeName>
<wicri:cityArea>Division of Biochemistry, Biophysics and Structural Biology, Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Thorner, Jeremy" sort="Thorner, Jeremy" uniqKey="Thorner J" first="Jeremy" last="Thorner">Jeremy Thorner</name>
<affiliation wicri:level="2">
<nlm:affiliation>Division of Biochemistry, Biophysics and Structural Biology, Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Californie</region>
</placeName>
<wicri:cityArea>Division of Biochemistry, Biophysics and Structural Biology, Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley</wicri:cityArea>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2019">2019</date>
<idno type="RBID">pubmed:30969890</idno>
<idno type="pmid">30969890</idno>
<idno type="doi">10.1091/mbc.E18-10-0682</idno>
<idno type="pmc">PMC6724684</idno>
<idno type="wicri:Area/Main/Corpus">000302</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000302</idno>
<idno type="wicri:Area/Main/Curation">000302</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000302</idno>
<idno type="wicri:Area/Main/Exploration">000302</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Analysis of the roles of phosphatidylinositol-4,5-
<i>bis</i>
phosphate and individual subunits in assembly, localization, and function of
<i>Saccharomyces cerevisiae</i>
target of rapamycin complex 2.</title>
<author>
<name sortKey="Martinez Marshall, Maria Nieves" sort="Martinez Marshall, Maria Nieves" uniqKey="Martinez Marshall M" first="Maria Nieves" last="Martinez Marshall">Maria Nieves Martinez Marshall</name>
<affiliation wicri:level="2">
<nlm:affiliation>Division of Biochemistry, Biophysics and Structural Biology, Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Californie</region>
</placeName>
<wicri:cityArea>Division of Biochemistry, Biophysics and Structural Biology, Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Emmerstorfer Augustin, Anita" sort="Emmerstorfer Augustin, Anita" uniqKey="Emmerstorfer Augustin A" first="Anita" last="Emmerstorfer-Augustin">Anita Emmerstorfer-Augustin</name>
<affiliation wicri:level="2">
<nlm:affiliation>Division of Biochemistry, Biophysics and Structural Biology, Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Californie</region>
</placeName>
<wicri:cityArea>Division of Biochemistry, Biophysics and Structural Biology, Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Leskoske, Kristin L" sort="Leskoske, Kristin L" uniqKey="Leskoske K" first="Kristin L" last="Leskoske">Kristin L. Leskoske</name>
<affiliation wicri:level="2">
<nlm:affiliation>Division of Biochemistry, Biophysics and Structural Biology, Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Californie</region>
</placeName>
<wicri:cityArea>Division of Biochemistry, Biophysics and Structural Biology, Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Zhang, Lydia H" sort="Zhang, Lydia H" uniqKey="Zhang L" first="Lydia H" last="Zhang">Lydia H. Zhang</name>
<affiliation wicri:level="2">
<nlm:affiliation>Division of Biochemistry, Biophysics and Structural Biology, Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Californie</region>
</placeName>
<wicri:cityArea>Division of Biochemistry, Biophysics and Structural Biology, Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Li, Biyun" sort="Li, Biyun" uniqKey="Li B" first="Biyun" last="Li">Biyun Li</name>
<affiliation wicri:level="2">
<nlm:affiliation>Division of Biochemistry, Biophysics and Structural Biology, Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Californie</region>
</placeName>
<wicri:cityArea>Division of Biochemistry, Biophysics and Structural Biology, Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Thorner, Jeremy" sort="Thorner, Jeremy" uniqKey="Thorner J" first="Jeremy" last="Thorner">Jeremy Thorner</name>
<affiliation wicri:level="2">
<nlm:affiliation>Division of Biochemistry, Biophysics and Structural Biology, Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Californie</region>
</placeName>
<wicri:cityArea>Division of Biochemistry, Biophysics and Structural Biology, Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley</wicri:cityArea>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Molecular biology of the cell</title>
<idno type="eISSN">1939-4586</idno>
<imprint>
<date when="2019" type="published">2019</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Armadillo Domain Proteins (chemistry)</term>
<term>Armadillo Domain Proteins (metabolism)</term>
<term>Carrier Proteins (chemistry)</term>
<term>Carrier Proteins (metabolism)</term>
<term>Cell Membrane (metabolism)</term>
<term>Mechanistic Target of Rapamycin Complex 2 (metabolism)</term>
<term>Phosphatidylinositol 4,5-Diphosphate (metabolism)</term>
<term>Protein Domains (MeSH)</term>
<term>Protein Subunits (metabolism)</term>
<term>Saccharomyces cerevisiae (metabolism)</term>
<term>Saccharomyces cerevisiae Proteins (chemistry)</term>
<term>Saccharomyces cerevisiae Proteins (metabolism)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Complexe-2 cible mécanistique de la rapamycine (métabolisme)</term>
<term>Domaines protéiques (MeSH)</term>
<term>Membrane cellulaire (métabolisme)</term>
<term>Phosphatidylinositol diphosphate-4,5 (métabolisme)</term>
<term>Protéines de Saccharomyces cerevisiae (composition chimique)</term>
<term>Protéines de Saccharomyces cerevisiae (métabolisme)</term>
<term>Protéines de transport (composition chimique)</term>
<term>Protéines de transport (métabolisme)</term>
<term>Protéines à domaine armadillo (composition chimique)</term>
<term>Protéines à domaine armadillo (métabolisme)</term>
<term>Saccharomyces cerevisiae (métabolisme)</term>
<term>Sous-unités de protéines (métabolisme)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemistry" xml:lang="en">
<term>Armadillo Domain Proteins</term>
<term>Carrier Proteins</term>
<term>Saccharomyces cerevisiae Proteins</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Armadillo Domain Proteins</term>
<term>Carrier Proteins</term>
<term>Mechanistic Target of Rapamycin Complex 2</term>
<term>Phosphatidylinositol 4,5-Diphosphate</term>
<term>Protein Subunits</term>
<term>Saccharomyces cerevisiae Proteins</term>
</keywords>
<keywords scheme="MESH" qualifier="composition chimique" xml:lang="fr">
<term>Protéines de Saccharomyces cerevisiae</term>
<term>Protéines de transport</term>
<term>Protéines à domaine armadillo</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Cell Membrane</term>
<term>Saccharomyces cerevisiae</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Complexe-2 cible mécanistique de la rapamycine</term>
<term>Membrane cellulaire</term>
<term>Phosphatidylinositol diphosphate-4,5</term>
<term>Protéines de Saccharomyces cerevisiae</term>
<term>Protéines de transport</term>
<term>Protéines à domaine armadillo</term>
<term>Saccharomyces cerevisiae</term>
<term>Sous-unités de protéines</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Protein Domains</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Domaines protéiques</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Eukaryotic cell survival requires maintenance of plasma membrane (PM) homeostasis in response to environmental insults and changes in lipid metabolism. In yeast, a key regulator of PM homeostasis is target of rapamycin (TOR) complex 2 (TORC2), a multiprotein complex containing the evolutionarily conserved TOR protein kinase isoform Tor2. PM localization is essential for TORC2 function. One core TORC2 subunit (Avo1) and two TORC2--associated regulators (Slm1 and Slm2) contain pleckstrin homology (PH) domains that exhibit specificity for binding phosphatidylinositol-4,5-
<i>bis</i>
phosphate (PtdIns4,5P2). To investigate the roles of PtdIns4,5P2 and constituent subunits of TORC2, we used auxin-inducible degradation to systematically eliminate these factors and then examined localization, association, and function of the remaining TORC2 components. We found that PtdIns4,5P2 depletion significantly reduced TORC2 activity, yet did not prevent PM localization or disassembly of TORC2. Moreover, truncated Avo1 (lacking its C-terminal PH domain) was still recruited to the PM and supported growth. Even when all three PH-containing proteins were absent, the remaining TORC2 subunits were PM-bound. Revealingly, Avo3 localized to the PM independent of both Avo1 and Tor2, whereas both Tor2 and Avo1 required Avo3 for their PM anchoring. Our findings provide new mechanistic information about TORC2 and pinpoint Avo3 as pivotal for TORC2 PM localization and assembly in vivo.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">30969890</PMID>
<DateCompleted>
<Year>2020</Year>
<Month>01</Month>
<Day>08</Day>
</DateCompleted>
<DateRevised>
<Year>2020</Year>
<Month>03</Month>
<Day>09</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1939-4586</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>30</Volume>
<Issue>12</Issue>
<PubDate>
<Year>2019</Year>
<Month>06</Month>
<Day>01</Day>
</PubDate>
</JournalIssue>
<Title>Molecular biology of the cell</Title>
<ISOAbbreviation>Mol Biol Cell</ISOAbbreviation>
</Journal>
<ArticleTitle>Analysis of the roles of phosphatidylinositol-4,5-
<i>bis</i>
phosphate and individual subunits in assembly, localization, and function of
<i>Saccharomyces cerevisiae</i>
target of rapamycin complex 2.</ArticleTitle>
<Pagination>
<MedlinePgn>1555-1574</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1091/mbc.E18-10-0682</ELocationID>
<Abstract>
<AbstractText>Eukaryotic cell survival requires maintenance of plasma membrane (PM) homeostasis in response to environmental insults and changes in lipid metabolism. In yeast, a key regulator of PM homeostasis is target of rapamycin (TOR) complex 2 (TORC2), a multiprotein complex containing the evolutionarily conserved TOR protein kinase isoform Tor2. PM localization is essential for TORC2 function. One core TORC2 subunit (Avo1) and two TORC2--associated regulators (Slm1 and Slm2) contain pleckstrin homology (PH) domains that exhibit specificity for binding phosphatidylinositol-4,5-
<i>bis</i>
phosphate (PtdIns4,5P2). To investigate the roles of PtdIns4,5P2 and constituent subunits of TORC2, we used auxin-inducible degradation to systematically eliminate these factors and then examined localization, association, and function of the remaining TORC2 components. We found that PtdIns4,5P2 depletion significantly reduced TORC2 activity, yet did not prevent PM localization or disassembly of TORC2. Moreover, truncated Avo1 (lacking its C-terminal PH domain) was still recruited to the PM and supported growth. Even when all three PH-containing proteins were absent, the remaining TORC2 subunits were PM-bound. Revealingly, Avo3 localized to the PM independent of both Avo1 and Tor2, whereas both Tor2 and Avo1 required Avo3 for their PM anchoring. Our findings provide new mechanistic information about TORC2 and pinpoint Avo3 as pivotal for TORC2 PM localization and assembly in vivo.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Martinez Marshall</LastName>
<ForeName>Maria Nieves</ForeName>
<Initials>MN</Initials>
<AffiliationInfo>
<Affiliation>Division of Biochemistry, Biophysics and Structural Biology, Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Emmerstorfer-Augustin</LastName>
<ForeName>Anita</ForeName>
<Initials>A</Initials>
<AffiliationInfo>
<Affiliation>Division of Biochemistry, Biophysics and Structural Biology, Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Leskoske</LastName>
<ForeName>Kristin L</ForeName>
<Initials>KL</Initials>
<AffiliationInfo>
<Affiliation>Division of Biochemistry, Biophysics and Structural Biology, Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Zhang</LastName>
<ForeName>Lydia H</ForeName>
<Initials>LH</Initials>
<AffiliationInfo>
<Affiliation>Division of Biochemistry, Biophysics and Structural Biology, Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Li</LastName>
<ForeName>Biyun</ForeName>
<Initials>B</Initials>
<AffiliationInfo>
<Affiliation>Division of Biochemistry, Biophysics and Structural Biology, Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Thorner</LastName>
<ForeName>Jeremy</ForeName>
<Initials>J</Initials>
<AffiliationInfo>
<Affiliation>Division of Biochemistry, Biophysics and Structural Biology, Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>R01 GM021841</GrantID>
<Acronym>GM</Acronym>
<Agency>NIGMS NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>S10 OD018136</GrantID>
<Acronym>OD</Acronym>
<Agency>NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>T32 GM007232</GrantID>
<Acronym>GM</Acronym>
<Agency>NIGMS NIH HHS</Agency>
<Country>United States</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D052061">Research Support, N.I.H., Extramural</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2019</Year>
<Month>04</Month>
<Day>10</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Mol Biol Cell</MedlineTA>
<NlmUniqueID>9201390</NlmUniqueID>
<ISSNLinking>1059-1524</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D051186">Armadillo Domain Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C503706">Avo1 protein, S cerevisiae</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D002352">Carrier Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D019269">Phosphatidylinositol 4,5-Diphosphate</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D021122">Protein Subunits</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D029701">Saccharomyces cerevisiae Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C504817">TSC11 protein, S cerevisiae</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 2.7.11.1</RegistryNumber>
<NameOfSubstance UI="D000076225">Mechanistic Target of Rapamycin Complex 2</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<CommentsCorrectionsList>
<CommentsCorrections RefType="ErratumIn">
<RefSource>Mol Biol Cell. 2019 Dec 1;30(25):3074</RefSource>
<PMID Version="1">31778346</PMID>
</CommentsCorrections>
</CommentsCorrectionsList>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D051186" MajorTopicYN="N">Armadillo Domain Proteins</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002352" MajorTopicYN="N">Carrier Proteins</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002462" MajorTopicYN="N">Cell Membrane</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000076225" MajorTopicYN="N">Mechanistic Target of Rapamycin Complex 2</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D019269" MajorTopicYN="N">Phosphatidylinositol 4,5-Diphosphate</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000072417" MajorTopicYN="N">Protein Domains</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D021122" MajorTopicYN="N">Protein Subunits</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012441" MajorTopicYN="N">Saccharomyces cerevisiae</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D029701" MajorTopicYN="N">Saccharomyces cerevisiae Proteins</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="pubmed">
<Year>2019</Year>
<Month>4</Month>
<Day>11</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2020</Year>
<Month>1</Month>
<Day>9</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2019</Year>
<Month>4</Month>
<Day>11</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">30969890</ArticleId>
<ArticleId IdType="doi">10.1091/mbc.E18-10-0682</ArticleId>
<ArticleId IdType="pmc">PMC6724684</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Genes Dev. 2018 Dec 1;32(23-24):1576-1590</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30478248</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biosci. 2015 Jun;40(2):299-311</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25963258</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Yeast. 2004 Aug;21(11):947-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15334558</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1996 Nov 26;93(24):13780-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8943012</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Syst Biol. 2010 Nov 30;6:430</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21119626</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Methods Cell Biol. 1989;31:357-435</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2476649</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Commun. 2016 Apr 13;7:11016</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27072897</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2013 May 9;497(7448):217-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23636326</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Cell. 2003 Mar;14(3):1204-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12631735</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Commun. 2017 Nov 23;8(1):1729</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29170376</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Struct Biol. 2014 Feb;185(2):147-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23916513</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Mol Cell Biol. 2008 Feb;9(2):99-111</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18216767</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 1993 May 7;73(3):585-96</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8387896</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Biol. 2018 May 7;217(5):1687-1700</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29563217</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Methods. 2008 Feb;5(2):159-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18176568</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Protoc. 2015 Jun;10(6):845-58</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25950237</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Elife. 2017 May 08;6:</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28481201</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Open Biol. 2011 Nov;1(3):110007</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22645648</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 1998 Jan;148(1):99-112</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9475724</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eur J Cell Biol. 1997 Dec;74(4):350-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9438131</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biomolecules. 2018 Jun 01;8(2):</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29865216</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 2015 Jun;1854(6):601-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25315852</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Microbiology. 2004 Oct;150(Pt 10):3289-304</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15470109</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cancer Discov. 2015 Nov;5(11):1194-209</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26293922</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 1997 Aug 12;36(32):9759-65</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9245407</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2011 Nov 29;108(48):19222-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22080611</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biosci. 2011 Mar;36(1):79-96</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21451250</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell. 2004 Mar 12;13(5):677-88</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15023338</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Elife. 2017 Mar 07;6:</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28264193</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Gen Genet. 1984;197(2):345-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">6394957</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Biol. 1998 Nov 5;8(22):1211-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9811607</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Biochem Sci. 2016 Jun;41(6):532-545</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27161823</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2012 Jan 31;109(5):1536-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22307609</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 1994 Dec 25;22(25):5767-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7838736</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2000 Feb 10;403(6770):623-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10688190</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 2007 Jan;27(2):633-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17101780</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Syst. 2018 Feb 28;6(2):192-205.e3</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29361465</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Yeast. 2013 Sep;30(9):341-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23836714</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Gene. 1996;173(1 Spec No):33-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8707053</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Struct Biol. 1999 Jun;9(3):383-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10361086</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Methods. 2012 Jun 28;9(7):676-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22743772</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biomolecules. 2017 Nov 01;7(4):</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29104218</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biomolecules. 2017 Jul 07;7(3):</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28686223</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEMS Yeast Res. 2016 May;16(3):</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26994102</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Cell Biol. 2012 Apr 15;14(5):542-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22504275</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Cell. 2005 Apr;16(4):1883-900</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15689497</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2003 Jan 24;112(2):151-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12553904</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 2017 Sep;207(1):179-195</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28739659</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Cell Biol. 2016 Feb;26(2):148-159</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26546292</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2016 Jan 04;11(1):e0146120</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26727004</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Cell Biol. 2018 Sep;20(9):1043-1051</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30154550</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2017 Mar 9;168(6):960-976</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28283069</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 2004 Oct 1;23(19):3747-57</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15372071</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 1998 Apr;148(4):1715-29</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9560389</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem Biophys Res Commun. 2018 Nov 25;506(2):307-314</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30139519</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Methods Enzymol. 2002;350:3-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12073320</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eukaryot Cell. 2008 Oct;7(10):1819-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18723607</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Metab. 2008 Feb;7(2):148-58</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18249174</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eukaryot Cell. 2002 Apr;1(2):163-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12455951</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 2005 Aug;25(16):7239-48</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16055732</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 1994 Mar 11;76(5):789-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7907279</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes Dev. 1999 Jul 1;13(13):1678-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10398681</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell. 2002 Sep;10(3):457-68</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12408816</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1978 Oct;75(10):4962-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">368805</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Microbiol. 2014;68:377-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25002088</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Protoc. 2009;4(10):1513-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19798084</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Rep. 2015 Oct 6;13(1):1-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26387955</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Cell. 2002 Feb;13(2):542-57</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11854411</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Protoc Mol Biol. 2010 Oct;Chapter 14:Unit14.20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20890901</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1998 Jun 19;273(25):15787-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9624178</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2006 Oct 12;443(7112):651-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17035995</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 1985 Dec;5(12):3610-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3915782</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2005 Sep 2;280(35):30697-704</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16002396</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Cell. 2012 Jun;23(12):2388-98</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22535525</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Biol. 2019 Mar 4;218(3):961-976</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30578283</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1998 Jun 19;273(25):15779-86</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9624177</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Biol. 2011 Nov 28;195(5):889-902</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22123866</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Methods. 2009 Dec;6(12):917-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19915560</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eukaryot Cell. 2007 Apr;6(4):744-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17293484</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2010 Oct 1;143(1):111-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20887896</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell. 2015 Jun 18;58(6):977-88</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26028537</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Cell. 1994 Jan;5(1):105-18</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8186460</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2012 Feb 24;287(9):6089-99</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22207764</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 2006 Aug;26(15):5861-75</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16847337</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biomolecules. 2017 Sep 05;7(3):</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28872598</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 1997 Sep 5;90(5):871-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9298899</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 1989 May;122(1):19-27</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2659436</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2013 Jul 02;8(7):e67902</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23844123</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 2017 Feb 15;36(4):397-408</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28096180</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Cell. 2009 Mar;20(5):1565-75</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19144819</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Biol. 1998 Mar 12;8(6):343-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9512420</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 1991 Aug 23;253(5022):905-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1715094</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 2007 Mar;1771(3):353-404</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17382260</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem J. 2009 Mar 15;418(3):567-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19143658</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes Dev. 1995 Jul 1;9(13):1559-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7628692</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Cell. 2011 Jul 1;22(13):2360-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21593205</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2000 Nov 24;275(47):37011-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10973982</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2001 Apr 10;98(8):4569-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11283351</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Cell. 2014 Aug 15;25(16):2351-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24966169</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2006 Sep 22;126(6):1079-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16990133</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 2003 Aug 15;22(16):4223-36</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12912920</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eukaryot Cell. 2008 Aug;7(8):1328-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18552287</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1995 Feb 17;270(7):2881-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7852364</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Genet. 2005 May;47(5):273-88</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15809876</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2010 Jun 29;107(26):11805-10</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20547860</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Methods. 2013 May;10(5):407-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23524392</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
<region>
<li>Californie</li>
</region>
</list>
<tree>
<country name="États-Unis">
<region name="Californie">
<name sortKey="Martinez Marshall, Maria Nieves" sort="Martinez Marshall, Maria Nieves" uniqKey="Martinez Marshall M" first="Maria Nieves" last="Martinez Marshall">Maria Nieves Martinez Marshall</name>
</region>
<name sortKey="Emmerstorfer Augustin, Anita" sort="Emmerstorfer Augustin, Anita" uniqKey="Emmerstorfer Augustin A" first="Anita" last="Emmerstorfer-Augustin">Anita Emmerstorfer-Augustin</name>
<name sortKey="Leskoske, Kristin L" sort="Leskoske, Kristin L" uniqKey="Leskoske K" first="Kristin L" last="Leskoske">Kristin L. Leskoske</name>
<name sortKey="Li, Biyun" sort="Li, Biyun" uniqKey="Li B" first="Biyun" last="Li">Biyun Li</name>
<name sortKey="Thorner, Jeremy" sort="Thorner, Jeremy" uniqKey="Thorner J" first="Jeremy" last="Thorner">Jeremy Thorner</name>
<name sortKey="Zhang, Lydia H" sort="Zhang, Lydia H" uniqKey="Zhang L" first="Lydia H" last="Zhang">Lydia H. Zhang</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/RapamycinFungusV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000390 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000390 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    RapamycinFungusV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:30969890
   |texte=   Analysis of the roles of phosphatidylinositol-4,5-bisphosphate and individual subunits in assembly, localization, and function of Saccharomyces cerevisiae target of rapamycin complex 2.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:30969890" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a RapamycinFungusV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Thu Nov 19 21:55:41 2020. Site generation: Thu Nov 19 22:00:39 2020